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Not many scientific breakthroughs bring significant advances simultaneously in both basic research and
translational applications like the discovery of RNA interference. Along with the elucidation of the RNA
interference pathway and the discovery of its participation in crucial biological events, a branch of science
has grown to utilize the RNA interference pathway as a biotechnology for both basic and applied research.
Small interference RNA, plasmid-, and virus-encoded short-hairpin RNA are now regular reagents in the
tool box of biologists to knockdown the expression of specific genes posttranscriptionally. Efforts have
also been made to develop RNA interference based therapeutics into reality. Many concerns about the RNA
interference technique have now been answered through research and development, although hurdles

are still present. In this review, the RNA interference/microRNA pathway is briefly introduced followed
with a detailed summary about the design and application of the RNA interference experiments, along
with examples of the utilization of the RNA interference technology in animal cells and model organisms.
Recent progresses and current concerns are also highlighted. Two techniques, namely morpholino and
external guide sequence, are discussed as complementary gene knockdown technology. RNA interference
technology, along with several other alternative gene knockdown techniques, is now indispensable to

modern biological and medical research.

© 2009 Elsevier Ltd. All rights reserved.
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Fire, Mello and co-workers published their seminal work
f RNA interference (RNAi) about a decade ago by revealing
ouble-stranded RNA (dsRNA) as the trigger of post-transcriptional
ilencing in Caenorhabditis elegans (Fire et al., 1998). Another phe-
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nomenon of post-transcriptional silencing comes from microRNA
(miRNA). In 1993, Ambros, Ruvkun and co-workers cloned the
first short non-coding RNA (later called microRNA collectively),
lin-4, also in C. elegans; and showed that lin-4 potentially func-
tions by binding to the 3′ UTR of its target, lin-14, through
partial complementary sequences (Lee et al., 1993; Wightman et
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1. Introduction
al., 1993). Advancement in the research eventually merged the
RNAi pathway with the miRNA pathway by showing that core
components are closely shared (Fig. 1; Murchison and Hannon,
2004).
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Fig. 1. The RNAi/miRNA pathway. miRNA genes are predominately transcribed by
RNA polymerase II (some are transcribed by RNA polymerase III) into large pri-
mary miRNA (pri-miRNA) transcripts with poly(A) tail and 5′ cap. Pri-miRNAs are
processed by a complex (called microprocessor) of DGCR8 and Drosha into miRNA
precursors (pre-miRNAs) of ∼70 nt with a hairpin structure of stem-loop. The for-
mation of some pre-miRNAs bypasses the Drosh/DGCR8 because they are processed
as intron (mirtron) in the pre-mRNA splicing (Ruby et al., 2007; Okamura et al.,
2007). Pre-miRNAs are exported from nucleus into cytoplasm by Exportin 5, and get
loaded into a complex composite of Dicer, Ago2, TRBP, and other known or unknown
proteins. Double-stranded RNA (dsRNA) can also be loaded into this complex for
processing. Pre-miRNAs or dsRNAs are cut into short miRNA duplex or small inter-
ference RNA (siRNA) around 21 bp by Dicer, and one strand (the guide strand, in red)
is then be integrated into RNA-induced silencing complex (RISC) whose core com-
ponent is Ago2. Another strand (the passenger strand, in black) will be degraded
(for the siRNA duplex) or released (for the miRNA duplex). siRNA can also be loaded
directly into the RISC complex without the need to slice by Dicer. Inside the siRISC
(small interference RNA programmed RNA-induced silencing complex), the siRNA
guide strand, by complete complementation with the targeted mRNA, triggers the
degradation of mRNA in the RISC; whereas inside the miRISC (miRNA programmed
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Fig. 2. Strategies of the RNAi technology. (A) Typical composition of a siRNA duplex
with the passenger strand, the guide strand, seed region, and the cleavage site
labeled. The first nucleotide (5′) of the guide strand is generally unpaired. siRNA
duplexes can be chemically modified or conjugated for the purposes of increasing
stability, avoiding immunostimulation, improving delivery, and enhancing potency.
(B) siRNA duplexes or genetically encoded shRNA can be transfected (or transformed
for viral shRNA) into mammalian cells with different methods. Drosophila S2 cells
can also be transfected with dsRNA for RNAi knockdown. High throughput, whole-
genome scale screening can be performed with cell cultures using siRNA, plasmid
shRNA, or viral shRNA libraries. (C) RNAi can be applied to whole animals in C. ele-
gans, Drosophila, and mice. Bacteria expressing dsRNA coded by a plasmid can be
fed to C. elegans for RNAi knockdown; whereas dsRNA encoded by transgene can be
NA-induced silencing complex), miRNA generally suppresses the translation of the
arget mRNA by incomplete complementation with the 3′ UTR region. The whole pre-

iRNA processing complex and RISC may be dynamic, share common components,
nd demand further characterization.

In principle, dsRNA, or microRNA precursor is cut into short
nterference RNA (siRNA) or miRNA duplex around 21 nucleotides
nt) by Dicer and its associated proteins such as TRBP. One strand
the guide strand, Figs. 1 and 2) is then be integrated into RISC. RISC
s RNA-induced silencing complex whose core component is Ago2.
nother strand (the passenger strand) will be degraded (for the
iRNA duplex) or released (for the miRNA duplex). The siRNA guide
trand, by complete complementation with the targeted mRNA,
riggers the degradation of mRNA in the RISC; whereas miRNA
enerally suppresses the translation of the target mRNA by incom-
lete complementation with the 3′ UTR region (Fig. 1; Preall and
ontheimer, 2005).

Upon the discovery that dsRNA can be introduced exogenously
nto eukaryotic cells to knockdown target mRNAs in a sequence
pecific manner, a lot of laboratories started to design strategies to
ynthesis long dsRNA for later transfection experiments, or to con-
truct plasmids encoding dsRNA for the knocking down of genes
ith special interest (Clemens et al., 2000; Tavernarakis et al., 2000;
ontgomery et al., 1998). These attempts were largely successful
n C. elegans and Drosophila, while inefficient in mammalian cells
Ui-Tei et al., 2000; Caplen et al., 2000). Reports also came out
bout long dsRNA triggering innate immune responses and cyto-
oxicities (Stark et al., 1998; Minks et al., 1979). Upon the discovery
hat RNA interference is mediated by ∼21 nt small RNAs, and fur-
induced to express in Drosophila. siRNA and viral shRNA can by applied to mice, and
proper chemical modifications and delivery strategies should be considered. High
throughput, whole-genome scale screening can also be done at whole animal level
for C. elegans and Drosophila.

ther the demonstration that siRNA duplex ∼21 base pairs (bp) long
can be applied to knock down gene expression in both Drosophila
and mammalian cell cultures without triggering unwanted immune
responses and cytotoxicity by Tuschl and co-workers, the RNAi tech-
nique became more practical (Zamore et al., 2000; Elbashir et al.,
2001a,b). Today, the majority of RNAi knockdown experiments are
performed directly with siRNAs or plasmid-/virus-encoded RNAs
that eventually give rise to siRNA in vivo.

2. Design of siRNA

There are currently two ways to harness the endogenous RNAi
pathway for gene knockdown purposes: either by introducing a
viral or plasmid vector to express short hairpin (shRNA) that would
then be processed by Dicer into siRNA (Abbas-Terki et al., 2002;
Kunath et al., 2003); or by delivering directly siRNA into the cyto-
plasm (Elbashir et al., 2001a,b; Fig. 2). shRNA, which mimics a
miRNA precursor, is usually expressed under a mammalian H1 or
U6 promoter in a viral or plasmid vector. For either method, RNAi
technique starts from the choosing and designing of one or several
functional siRNAs. The first consideration is to ensure the siRNA
targets specifically to the mRNA of interest without unwanted off-
target effects (specificity), and at the same time, the siRNA should
have a desirable (if not the highest possible) knockdown efficiency

(potency).

The initial siRNA design starts with a bioinformatics-aided
search for ‘targetable’ sequences of ∼21 nt long in the mRNA of
interest (Pei and Tuschl, 2006). Because a perfect complement with
the targeted mRNA triggers degradation, and an imperfect comple-
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ent triggers translational suppression, the possibility for a siRNA
f ∼21 nt to generate an off-target effect is high without careful
esign (Jackson et al., 2003; Lin et al., 2005). The principle here is to
void complementary sequences in the siRNA ‘seed region’ to unto-
ard mRNAs (Fig. 2). The ‘seed region’ is at positions 2–7 (or 2–8)

f the guide strand of the miRNA or siRNA duplex. For miRNA func-
ion, the seed region usually perfectly complements the 3′ UTR of
arget mRNA (Lai, 2002). Off-targeting of siRNA is found to be asso-
iated with the presence of one or more perfect complementation of
he seed region with the 3′ UTR of untoward mRNA (Birmingham
t al., 2006). Several softwares and Internet search programs can
e helpful in the selection of siRNA sequences for avoiding off-
arget effects (Qiu et al., 2005; Naito et al., 2005). These programs
an be found from some websites such as http://dsCheck.RNAi.jp/
to check and avoid sequences with high homology, Naito
t al., 2005), http://rnai.cs.unm.edu/rnai/off-target/sirna freq/,
ttp://rnai.cs.unm.edu/rnai/off-target/genes-targeted/ (to check
ff-target effects, Qiu et al., 2005), and http://www.broad.mit.edu/
enome bio/trc/publicSearchForHairpinsForm.php (to search pre-
valuated siRNA sequences for mouse and human genes).

Although current understanding of RNAi activity cannot provide
s with a precise prediction of potency to each individual siRNA,
lgorithms based on common features from high potency siRNA
ested empirically are available (Pei and Tuschl, 2006; Reynolds et
l., 2004). Once the bioinformatic part is done, candidate siRNA can
hen be synthesized and tested in cell culture systems for knock-
own efficiency. The off-target effect can also be checked with a
icroarray assay. The final goal of this stage is to identify several siR-
As that show high knockdown efficiency and minimal off-target
ffect at nanomolar or lower concentrations.

Theoretically, there is an alternative way for selecting siRNA with
igh specificity and potency. Using a library of tiling siRNAs cover-

ng the whole mRNA sequence of interest can be screened with
ell culture systems, and individual siRNA from this library with
tringent specificity and high efficacy can then be identified. This

ethod is more expensive and labor intensive, although knowledge

ained from this approach can assist future design of siRNA.
When considering specificity and potency, it is beneficial to

hink about sequence conservation between species at the same

able 1
xamples of siRNA sequence and the corresponding knockdown efficiency.

iRNA sequence Targeted gene

UUUUCACUCCAGCUAACAdTdT CXCR4 (3′ UTR)
CACGGAAGUCCAUCUGAAUU Ago2
CAGGACAAAGAUGUAUUAUU Ago2 (two mismatches)

UGCCUAUGUCUCAGCCUCUU TNF-�
AUCAUCUUCUCAAAAUUCUU TNF-�
ACAACCAACUAGUGGUGCUU TNF-�
GAGAAAGUCAACCUCCUCUU TNF-�
GCCUUCCUACCUUCAGACUU TNF-�
UGCCUAUGUCUCAGCCUCdTdT combined
with GACAACCAACUAGUGGUGCdTdT

TNF-�

GCCUCAGCGCCCCUUUGCdTdT PKC�
AACGUCAGCCAUGGUCCCdTdT PKC�
CAGUGACCCACAGUGAUCUU PKC�
GACUUGAAGAAGUCGUGCUU GFP
AAGAAGAUGGUGCGCUCCUU GFP

GCGGCUUUGCCAAGUGCUUdTdT PLK
UGUCCAUGGAAAUAUCCAUdTdT PLK
AUUGUGCCUAAGUCUCUGCdTdT PLK
GAAGAUCUGGAGGUGAAAAdTdT PLK
GGGGGGAGCCAAAAGGGUCdTdT GAPD
CAUCAUCUCUGCCCCCUCUdTdT GAPD
AGCCAAAAGGGUCAUCAUCdTdT GAPD
AAAAGGGUCAUCAUCUCUGdTdT GAPD

a Knockdown in cell cultures.
b Knockdown in mice.
stry & Cell Biology 42 (2010) 1243–1251 1245

time. siRNAs often have to go through tests with cell cultures
from different species and animal models, so it is more reason-
able to start with siRNAs that target conserved sequences in the
mRNA.

Several practices can enhance specificity and potency of siRNA
once its sequence is decided. For example, because the loading of
siRNA into RISC is asymmetric (Schwarz et al., 2006; Khvorova et
al., 2003), the first nucleotide of the 5′ end of the guide strand is
usually made unpaired so that this strand can be loaded into RISC
preferentially to increase its specificity and efficiency (Fig. 2).

siRNA can also be modified chemically to increase specificity and
potency. Chemical modifications of riboses in the guide strand were
found to suppress off-target effects without affecting the potency
(Jackson et al., 2006; Fedorov et al., 2006). For example, 2′-O-methyl
modification at nucleotide 2 of the guide strand is efficient to sup-
press off-targeting.

Modifying siRNA chemically can also increase its stability in
the cells or animal/human body. Knowledge of avoiding nuclease
degradation from previous research using antisense oligonu-
cleotides and aptamers has been beneficial in the chemical
modification of siRNA. Protection from nuclease degradation can
be achieved mainly by two kinds of modifications: phosphodiester
modifications and 2′-sugar modifications.

For example, replacing one of the two non-bridging oxygen
atoms with a sulfur atom (P S) or an isophosphonate borane (–BH3)
moiety is found to protect siRNA from exonuclease degradation
(Layzer et al., 2004; Choung et al., 2006; Allerson et al., 2005; de
Fougerolles et al., 2005). Moderate P S modifications are also well
tolerated in term of knockdown potency and toxicity. Also, mod-
ifications at the 2′ position of the ribose ring protect siRNA from
endonuclease degradation. These mainly include 2′-O methyl (2′-
OMe), 2′-deoxy-2′-fluoro (2′-F) modifications, and locked nucleic
acid (LNA) (Chiu and Rana, 2003; Jackson et al., 2006; Allerson et al.,
2005; Bondensgaard et al., 2000; Braasch and Corey, 2001). Appro-
priate 2′-OMe modifications not only increase the plasma stability

but also alleviate off-target effects, and at the same time enhance
in vivo potency of siRNA (Chiu and Rana, 2003; Jackson et al., 2006).
Several recent reviews provide a more thorough summary on chem-
ical modifications of siRNA (Watts et al., 2008; Corey, 2007).

Knockdown efficiency Notes and reference

∼80% Sense strand (passenger strand) sequences
were shown. Efficiencies of knockdown in cell
culture at the mRNA level were shown. Alemán
et al. (2007)

∼93%
∼91%

∼60%a

Sense strand sequences were shown.
Knockdown efficiencies were for protein level.
Sørensen et al. (2003)

∼40%a

∼85%a

Not significanta

∼55%a

∼80%b

∼90%
Antisense strand (guide strand) sequences
were shown. Knockdown efficiencies were for
protein level. Leirdal and Sioud (2002)

∼50%
∼50%
∼60%
∼70%

∼30%

Sense strand sequences were shown.
Knockdown efficiencies were for mRNA level.
Reynolds et al. (2004)

∼45%
∼70%
∼50%
Not significant
∼70%
∼90%
∼95%

http://dscheck.rnai.jp/
http://rnai.cs.unm.edu/rnai/off-target/sirna_freq/
http://rnai.cs.unm.edu/rnai/off-target/genes-targeted/
http://www.broad.mit.edu/genome_bio/trc/publicSearchForHairpinsForm.php
http://www.broad.mit.edu/genome_bio/trc/publicSearchForHairpinsForm.php


1 chemi

i
(
e
s
l
(
h
p
d
g
c
e
a
t
w
t
2
b
F

o
s
a

N
T
c
s
a
r

a
a
c
2
s
e
f

3

t
t
v
e
t
w
g
s
c
c
r
s
j
f
s
h
t
s
e
r
i
o

246 G. Shan / The International Journal of Bio

Another concern in the design and synthesis of siRNA is avoid-
ng innate immune responses, which nuclear acids can trigger
Uematsu and Akira, 2007). dsRNA longer than 30 base pairs can
fficiently trigger serine/thronine protein kinase PKR. siRNA is
maller, but at higher concentrations, may trigger this pathway
eading to a global blockade of translation and eventually cell death
Gitlin et al., 2002; Persengiev et al., 2004). Another issue, per-
aps with greater concern in RNAi therapeutics, is that siRNA is
otentially able to activate Toll-like receptors (TLRs), especially the
sRNA receptor TLR7 in plasmacytoid dendritic cells, that trig-
er the production of type I interferons and pro-inflammatory
ytokines, and induce nuclear factor-�B (NF-�B) activation (Sledz
t al., 2003). Some siRNAs have a higher tendency to activate TLR,
nd for this reason, they could be called isRNA (immunostimula-
ory RNA) (Hornung et al., 2005; Judge et al., 2005). Small RNAs
ith 3′ blunt ends and GU rich sequences are strong isRNA, which

hen should be avoided when designing the siRNA (Schlee et al.,
006). Chemical modifications at the 2′ sugar can also be beneficial
ecause they help to avoid the immunostimulation (Sioud, 2008;
aria and Ulrich, 2008).

Research in designing siRNA with various improvements is still
ngoing. There are reports on the benefits of longer siRNA duplexes,
horter siRNA duplexes, asymmetric passenger strands, etc. (Sun et
l., 2008; Kubo et al., 2007; Chang et al., 2009).

To a lot of laboratories, the designing and synthesis of siR-
As or shRNA vectors are now relegated to companies such as
hermo Fisher Scientific® and Applied Biosystems®. Nevertheless,
ommercial pre-designed and validated siRNAs or shRNA con-
tructs produced with the same principles discussed above are well
ccepted for general projects with cell culture systems with mouse,
at, or human origin.

RNAi technology is now being applied in many organisms in
variety of ways. This review concentrates on its application in

nimals, and readers can refer to other articles about the appli-
ation of RNAi technology in plants (Fu et al., 2007; Baulcombe,
004; Travella et al., 2006). To give an overall taste about the
iRNA sequence and the corresponding knockdown efficiency, some
xamples of sequences, targeted genes, and knockdown efficiencies
rom several publications are summarized in Table 1.

. Application of RNAi technique in cell cultures

The most common use of the siRNA technique is to knock down
he expression of individual genes in cell cultures (Fig. 2). Generally
he siRNA duplex is used for short term knockdown, and plasmid or
iral shRNA vectors are applied for longer term knockdown, or for
stablishing stable cell lines. siRNA duplex and plasmid shRNA vec-
or are usually transfected with commercial transfection reagents,
hich are actually lipoplexes. Viral shRNA vector is generally a

ood choice for hard-to-transfected or delicate cells that cannot
tand chemical transfection. There are also efforts in using peptide-
onjugated siRNA duplexes for high efficient delivery of siRNA into
ultured cells without the need of lipoplex or liposome transfection
eagents (Turner et al., 2007). Both 5′- and 3′-ends of the passenger
trand are well tolerant to conjugations. The simplest peptide con-
ugation uses cholesteryl oligo-d-arginine (Chol-R9). Non-covalent
orming of complexes of siRNA with Chol-R9 efficiently delivered
iRNA targeting to VEGF into cells (Kim et al., 2006). Other peptides
aving been investigated include MPG, derived from the fusion pep-
ide domain of HIV-1 gp41 protein and the nuclear localization

equence (NLS) of SV40 large T antigen. In cell culture, the peptide
nables rapid delivery of the siRNA into the cytoplasm and results in
obust down-regulation of target mRNA (Simeoni et al., 2003). Sim-
lar to MPG, penetratin, a peptide derived from the homeodomain
f Drosophila protein Antennapedia, has been known to be able
stry & Cell Biology 42 (2010) 1243–1251

to deliver cargos into cells. Penetratin 1 conjugated siRNA can be
delivered rapidly and efficiently into cultured primary mammalian
hippocampal and sympathetic neurons (Davidson et al., 2004). TAT
peptide (derived from the trans-activating transcriptional activator
from HIV-1 virus) and other cell penetrating peptides (CPPs) have
also been tested with various delivery efficiencies (Turner et al.,
2007).

A particular concern in using the RNAi technique is the choice of
negative and positive controls. Initially, untreated cells and mock
transfection (or transformation for viruses) can be used as nega-
tive controls to examine the effects of the transfection process to
cells and to the gene of interest. A well-accepted negative control
for siRNA duplexes is an RNA duplex with a scrambled sequence,
which has no perfect match in the genome. A negative control for
plasmid or viral construct is usually the empty vector. Positive con-
trols are applied to show that the RNAi experiment works in your
particular cells with your RNAi protocol. A well pre-evaluated siRNA
or vector can serve as a positive control. Issues about controls will
be discussed further in Section 7.

The knockdown effect of RNAi can be checked with northern blot
or real-time PCR at the mRNA level, and further with Western blot
at the protein level. The RNAi protocol can be optimized based on
evaluation of the knockdown efficiency and by referencing negative
and positive controls.

4. Systematic application of RNAi technology

A growing interest is to exploit RNAi technology for system-
atic biology and functional genomics research to knockdown gene
expression in whole-genome or whole-pathway scales.

4.1. C. elegans

dsRNA-mediated RNAi can be conveniently applied in C. elegans
for knocking down gene expression of individual genes, or at a large
whole-genome scale, to identify candidate genes for crucial biolog-
ical events. In C. elegans, injection of dsRNA into the gonad of an
adult hermaphrodite leads to a high frequency of the appropriate
mutant phenotypes in her progeny, and in addition, C. elegans is
so susceptible to dsRNA that merely soaking animals in the dsRNA
or feeding them bacteria that produce dsRNA can lead to a mutant
phenotype (Timmons and Fire, 1998; Tabara et al., 1998; Fig. 2). A
whole-genome RNAi feeding library has been developed, and the
feeding strategy is straightforward enough to be adapted for spe-
cific projects. It is now a prevalent method in the community of C.
elegans (Kamath et al., 2001; Simmer et al., 2003). Many successful
systematic RNAi screenings have been performed (Kim et al., 2005;
Parry et al., 2007; Mabon et al., 2008). With the availability of sev-
eral RNAi “super-sensitive” strains, RNAi knockdown in C. elegans
can now be efficient for genes expressed in neurons, where exoge-
nously induced RNAi is refractory for wildtype animals (Wang et
al., 2005; Simmer et al., 2002; Kennedy et al., 2004; Samuelson et
al., 2007). In C. elegans, RNAi can even be fine tuned for a specific
developmental stage (Shan and Walthall, 2008).

The C. elegans community has enthusiastically employed this
very successful feeding RNAi library, and so far, many whole-
genome high-throughput screenings have been done to identify
genes in crucial biological pathways such as fat regulatory, aging,
and miRNA function (Ashrafi et al., 2003; Samuelson et al., 2007;
Parry et al., 2007).
4.2. Drosophila

RNAi technology has now been used for several whole-genome
screens in Drosophila using specific cell-based assays for a variety
of pathways with dsRNA libraries (Kuttenkeuler and Boutros, 2004;
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outros et al., 2004). DsRNA fragments are readily internalized into
rosophila S2 cells by scavenger receptor-mediated endocytosis

Ulvila et al., 2006), and most large scale RNAi screenings are per-
ormed with S2 cell cultures (Hao et al., 2008; Fleming and Rieder,
003; Lents and Baldassare, 2006; Cherry, 2008). Genes related to
ytokinesis, cell cycle regulation, specific signaling pathways, and
irus replication are identified with S2 cells through RNAi screen-
ng (Björklund et al., 2006; DasGupta and Gonsalves, 2008; Mattila
t al., 2008; Bonaldi et al., 2008; Hao et al., 2008).

Whole-genome RNAi can also now be performed in the whole
rganism of Drosophila with the availability of a genome-wide

ibrary of RNAi transgenes for conditional gene inactivation in
rosophila melanogaster (Dietzl et al., 2007; Fig. 2). This library
llows the analysis and screening of genes playing roles in neu-
ons and other cell types at the whole animal level (Liu and Davis,
009; Cauchi et al., 2008).

.3. Mammalian cells

siRNA libraries, plasmid-based shRNA libraries, and virus-based
hRNA libraries are now available for high-throughput screening
ith mouse or human cell cultures (Fewell and Schmitt, 2006;
anesan et al., 2008; Root et al., 2006; Chang et al., 2006). We
ave seen many successful examples of genome-wide RNAi-based

unctional genomics in identifying novel genes in pathways such
s pigmentation, cell division, cell signaling, and virus replication
Ganesan et al., 2008; Kittler et al., 2007; Zhou et al., 2008). RNAi
creenings have just been adapted to the whole organism level in
ice in a successful in vivo screen with a shRNA pool to identify

umor suppressors in liver cancer (Zender et al., 2008).
For high-throughput screenings, organism and project specific

onsiderations should be carefully addressed. Several recent publi-
ations provide further reference on this matter (König et al., 2007;
rausz, 2007; Lee, 2006; Paddison, 2008).

. Application of RNAi to mammalian body

Direct application of the RNAi technique to the whole body or to
specific tissue/organ is being increasingly pursued for both basic

nd translational research. siRNAs or shRNA constructs verified
ith cell cultures can be delivered into animal bodies to investi-

ate the effect of a specific gene in physiological context or to treat
specific disease with an animal model (Fig. 2).

For in vivo application, the central considerations are chemical
odification and delivery strategy. Appropriate chemical modifi-

ations help siRNA duplexes to avoid immuno-stimulation and to
ithstand degradation from nucleases. Efficient and tissue specific

elivery may be the biggest challenge in the application of RNAi to
hole animals.

Different delivery strategies have been developed to meet the
equirements for different disease model and target tissues (or
rgans). For viral shRNA vector, it is straightforward to apply the
irus particles directly to the targeted tissue or organ. For siRNA
uplexes, delivery has to be put under specific consideration. First,
aked siRNA can be applied directly to organs such as the eye, lung,
r central nervous system (CNS) through injection, instillation, or

nfusion (Bitko et al., 2005; Zhang et al., 2004; Dorn et al., 2004). Cer-
ain cell types can efficiently take up naked siRNA through unknown

echanisms, whereas many other cell types are refractory to naked
iRNA. For this reason, siRNA duplexes have to be conjugated or

ormulated for efficient delivery in most cases. siRNA duplex can
e delivered via liposomes or lipoplexes into the body. Liposomes
re vesicles enclosed by a phospholipid bilayer, and can fuse with
cell membrane to deliver the enclosed contents into the cyto-

lasm. Both liposomes and lipoplexes have been successfully used
stry & Cell Biology 42 (2010) 1243–1251 1247

to deliver siRNA into mice (Reich et al., 2003; Nakamura et al., 2004;
Miyawaki-Shimizu et al., 2006; Luo et al., 2005).

siRNAs can be chemically conjugated with other molecules for
in vivo delivery. The idea of covalently conjugating small molecules
such as cholesterol was borrowed from previous research based
on antisense oligonucleotide therapeutics (Eckstein, 2007). 5′-End
cholesterol conjugation of the passenger strand has been shown to
efficiently deliver siRNA intravenously for targeting the ApoB gene
in the liver and jejunum (Kumar et al., 2006). RNA aptamers can
also be conjugated to siRNA for the purpose of cell specific deliv-
ery. Aptamers are artificial DNA or RNA molecules that bind to
specific molecular targets (Que-Gewirth and Sullenger, 2007). One
report using a siRNA conjugated with a RNA aptamer that has a
high affinity to prostate-specific membrane receptors showed that
it silenced survival genes in prostate cancer cells with a high cell
specificity and efficacy (McNamara et al., 2006). When it comes to
cell specific delivery, peptides or antibodies can also be conjugated
non-covalently with siRNA. A fusion protein with the specific anti-
body and a protamine fragment, which is arginine-rich and thus
positively charged, can bind to siRNA (negatively charged) for deliv-
ery. Successful in vitro and in vivo applications include delivery of
siRNA to B16 melanoma expressing HIV envelope protein or HIV-
infected primary CD4 T cells using a fusion protein of protamine and
Fab fragment of antibody to HIV envelope protein (Song et al., 2005).
Peptide conjugations discussed previously in cell culture delivery
section can also be used for in vivo delivery. One report showed
successful in vivo delivery in animal model with chol-R9 (Kim et al.,
2006). Some peptides can be recognized by cell specific receptors,
and thus can be conjugated with siRNA for cell-specific delivery.
Recently, a 29-amino-acid peptide derived from rabies virus gly-
coprotein (RVG) has been shown to be able to deliver conjugated
siRNA (through a nonamer arginine fusion, RVG-R9) transvascularly
to the brain resulting in efficient gene silencing. This peptide was
found to bind specifically to the acetylcholine receptor expressed
by neuronal cells (Kumar et al., 2007).

Another siRNA delivery strategy showing increased interest
is the use of nanoparticles, which are structures in the size of
nanometer scale (often 100 nm or smaller). Liposomal vesicles,
lipoplexes, and antibody or some peptide-conjugated siRNA com-
plexes discussed above are also actually nanoparticles. Nano-scale
technologies are changing the foundations of drug delivery. These
technological innovations are now referred to as nanomedicines
by the National Institutes of Health. Nanoparticles have particu-
lar advantages in drug delivery. First, therapeutic agents can be
encapsulated, thus, protected from degradation, clearance, and
non-specific binding. Second, the release speed and location (tissue
or even subcellular localization) of drugs can be well controlled by
manipulation in the composition of nanoparticles. Third, the phar-
macokinetics of the drugs can be optimized (Moghimi et al., 2005).
At present, the most wildly used nanoparticle for siRNA delivery
is a nanopolymer formed with polyethylenimine (PEI). A number
of reports using PEI polymers demonstrated efficient siRNA deliv-
ery in animal models of influenza, Ebola virus infection, and tumors
(Grzelinski et al., 2006; Urban-Klein et al., 2005; Ge et al., 2004; Tan
et al., 2005). Components such as peptides and small compounds
(e.g. folate) for cell specific delivery can also be added into the
PEI-siRNA polyplexes. For example, arginine-glycine-aspartic acid
(RGD)-peptide, which has been shown to bind to both tumor and
tumor-endothelial cells in vivo (Zitzmann et al., 2002), has been suc-
cessfully used to deliver PEI-siRNA into tumor tissues (Schiffelers
et al., 2004). More information about the delivery of siRNA with

nanoparticles is available in recent reviews (Juliano et al., 2008; de
Fougerolles, 2008; Howard and Kjems, 2007).

Different delivery strategies can be used in combination. For
example, siRNA can be conjugated covalently with small com-
pounds and noncovalently with other molecules simultaneously,
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nd at the same time packed into liposomes or other nanoparticles
ith or without components (e.g. antibody and peptides) for tissue

pecific delivery.

. Therapeutics

One of the ultimate goals of RNAi technology is to develop a
ew generation of drugs that target once thought “untargetable”
RNAs related to diseases. RNAi-based therapeutics begins with

he design and identification of siRNAs that show high specificity
nd knockdown potency in research labs. Once several siRNAs are
elected, they are then applied to animal models with diseases of
nterest. siRNA may need to be modified for its stability and then
elivered via different routes and strategies discussed above. Highly
otent siRNAs tested with animal models may then advance into
linic trials. Currently, several clinic trials are in place for treating
iseases such as macular degeneration (AMD), diabetic retinopathy,
nd hepatitis C (de Fougerolles, 2008). More detailed discussions
bout RNAi-based therapeutics can be found from recent reviews
Shan and Jin, 2009; Haussecker, 2008).

. Current concerns, hurdles and future promises

Several previous concerns around RNAi technology such as off-
argeting and immunostimulation have been investigated very
arefully. With more knowledge about the “seed region” of miRNA
nd the properties of isRNA, these concerns are now well addressed,
nd off-targeting and immunostimulation can be managed to
inimal or acceptable levels through optimal siRNA design-

ng and modifications. RNAi technology utilize the endogenous
NAi/miRNA pathway, and one concern still persisting is that
xogenous siRNA may exaggerate components in the RNAi/miRNA
athway from their endogenous functions. Indeed, Grimm et al.
eported using adeno-associated virus type 8 as a viral vector for
hRNA expression in liver (Grimm et al., 2006). Lethality was found
o be widespread at higher viral titers due to over-saturating the
ndogenous miRNA pathway. Thus, the application of adenovirus
or RNAi to whole animal (and for any RNAi experiment in gen-
ral) has to be very careful in optimizing viral dosage and sequence
f the encoded shRNA. This concern of exaggerating endogenous
NAi/miRNA functions also need to be addressed when setting
p negative and positive controls. Although scrambled RNA (for
iRNAs) or empty vector (for shRNA constructs) are acceptable neg-
tive controls, one should keep in mind that these controls would
ot utilize the RNAi pathway at all, and thus do not take up the
NAi pathway from its endogenous functions. I propose here that
functional irrelevant siRNA should be used at the same dosage

s a negative control for specific projects. For example, a siRNA (or
hRNA) for GAPDH can be used as a negative control in a project
o knockdown P53 with RNAi. On the other hand, a functional rel-
vant siRNA (e.g. targeting to a gene in the same pathway) should
e used at the same dosage as a positive control. Dosage and effec-
ive periods still need to be improved for siRNA. Currently, nano- to

icro-molar concentrations are applied to cell cultures and whole
rganisms. This is a well-accepted concentration range for most
mall molecular drugs. But for siRNA, it is still relatively expen-
ive. Efforts have been undertaken to lower the required dosage
nd to increase the effective period for siRNA (Shan et al., 2008).
ur knowledge in the function of the RNAi/miRNA pathway and

ther small RNA pathways has been increasing dramatically, while
e are still far from recognizing the full effects of small noncod-

ng RNAs. Caution and alternative verifications need to be applied
hen we explain the effects for any siRNA or shRNA, as a foreign

ntroduced small RNA.
stry & Cell Biology 42 (2010) 1243–1251

RNAi technology is used predominantly for targeting mRNA.
More recently, some researchers applied RNAi to knockdown non-
coding RNAs transcribed by pol II such as HOTAIR (Rinn et al., 2007).
Whether RNAi works for noncoding RNAs generated by pol III and
other ncRNAs is still an open question. With the dramatic expansion
of the list of noncoding RNAs, RNAi and other technologies need to
be evaluated for effectiveness in knocking down noncoding RNAs.

As a phenomenon biologists have started to uncover from the
end of the last century, RNAi has generated enormous success for
scientists in both basic and medical research. It enables a lot of
projects that were unable to be pursued previously. The advance-
ment of RNAi technology is rapid and has achieved breakthroughs
with enormous enthusiasm and effort. In the near future, we will
see more predominant usage of RNAi technology specifically in high
throughput whole-genome screening and translational research
to develop RNAi-based therapeutics. Combinatory use of system-
atic RNAi and proteomics or other high-throughput technologies
is another trend currently under development (Selbach and Mann,
2006; Bauer and Ueffing, 2006; Kittler et al., 2008). With the emer-
gence of more understanding of the RNAi/miRNA pathway itself
and great advances in technique and strategy development, a great
optimism exists in the success and miracles that RNAi technology
will bring to biology and medicine.

8. Other methods for gene knockdown

Even though RNAi is now the dominant technology used in ani-
mals, it is better to keep in mind the existence and sometimes
advantages of other alternative technologies for gene knockdown.

One gene knockdown technique based on antisense strat-
egy called “morpholinos” has been applied for decades to mice,
zebrafish, frogs, and sea urchins (Heasman, 2002). A morpholino
oligo is a modified nuclear acid polymer (∼25 bases) in which
the ribo sugars are replaced with morpholine rings. Morpholinos
are sometimes referred to as PMOs (phosphorodiamidate mor-
pholino oligos). Morpholinos bind to the target mRNA through
Watson/Crick base-pairing and block the translation (binding to
the start codon) or splicing (binding to the exon/intron juc-
tion). Recently, morpholinos have been used successfully to block
the maturation of specific miRNA (Flynt et al., 2007). Generally,
morpholinos are very stable in cells and the blood stream, and con-
sidered to have minimal off-target and side effects (Summerton,
2007). Morpholinos dominate gene knockdown applications in
developing embryos, specifically, in zebrafish. One genuine restric-
tion in the application of morpholinos is that morpholinos cannot
be encoded genetically, and get eventually diluted to below-
effective concentrations during cell proliferations.

External guide sequence (EGS) is another technology developed
for posttranscriptional knockdown of gene expression (Li et al.,
1992; Yuan and Altman, 1994). It utilizes the endogenous RNase
P enzyme to cleave target RNA under the guidance of an exoge-
nously introduced RNA molecule (EGS RNA) (Li et al., 1992; Yuan
and Altman, 1994; Ma et al., 2000). RNase P is an enzyme respon-
sible for the maturation of tRNA by cleaving the 5′ of the tRNA
precursors, and is universally present in cells from bacteria to mam-
mals (Altman, 2007). One of the advantages of EGS technology
derives from the fact that RNase P is universal; thus it can be uti-
lized in almost all cells. EGS technology can essentially target any
RNA species as long as the RNA of interest and the EGS RNA form
a structure that mimics a tRNA precursor; therefore, can be used

to target both mRNA and noncoding RNAs transcribed by all the
RNA polymerases, which is clearly an advantage to exploit in the
future. RNase P is relatively abundant in most cells and localized in
the nucleus in eukaryotic cells, which ensures an early, efficient
knockdown by EGS without occupying too much RNase P from
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ts endogenous functions. A plasmid encoded EGS targeting RPP38
RNA in Hela cells can achieve comparable (if not higher) knock-

own efficiency in much shorter periods (18 h versus 48 h) when
ompared with RNAi (Ge Shan, unpublished data).

Currently EGS technology has been applied with different
egrees of success in a variety of prokaryotes and eukaryotes (Ma
t al., 2000; Bassett et al., 2008; Ko et al., 2008; Lundblad et al.,
008). These include trials to inhibit pathogenic bacteria by down-
egulating virulent genes, and to control virus infection in vivo in

ice by degrading essential viral mRNA (Bai et al., 2008; Reyes-
arias et al., 2008). Although more research such as developing it

nto a streamline process for more convenient application, and eval-
ating thoroughly the off-target and side effects, has to be done
efore we can fully enjoy the advantages the EGS technology has to
ffer.

. Conclusions

RNAi technology is a very timely invention in the era of
ostgenome to serve as one of the most powerful tools for reverse
enetics, functional genomics, and systematic biology. Although we
hould keep in mind that continuous improvements and modifica-
ions are necessary to make RNAi technology more potent, it already
evolutionizes our way of doing biology and medicine. Two lessons
re learned here. First, old (sometimes less efficient) technology
an aid the development of new technology. The explosion of RNAi
echnology actually benefited from the previous development of
ntisense technology. Second, basic research is essential to applied
esearch. The discovery of the RNAi/miRNA pathway opens the door
o RNAi technology, and further characterization of this pathway
eally facilitates the development of RNAi technology step by step.
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